Disentanglement via latent quantization
Kyle Hsu, Will Dorrell, James CR Whittington, Jiajun Wu, Chelsea
Finn
NeurIPS 2023
Tripod: three complementary inductive biases for disentangled
representation learning
Kyle Hsu*, Jubayer Ibn Hamid*, Kaylee Burns, Chelsea Finn, Jiajun Wu
ICML 2024
Range, not independence, drives modularity in biologically inspired representations
Will Dorrell*, Kyle Hsu*, Luke Hollingsworth, Jin Hwa Lee, Jiajun Wu, Chelsea Finn, Peter E Latham, Timothy Edward John Behrens, James CR Whittington
ICLR 2025
Flow to the mode: mode-seeking diffusion autoencoders for state-of-the-art image tokenization
Kyle Sargent, Kyle Hsu, Justin Johnson, Li Fei-Fei, Jiajun Wu,
preprint
Vision-based manipulators need to also see from their hands
Kyle Hsu*, Moo Jin Kim*, Rafael Rafailov, Jiajun Wu, Chelsea Finn
ICLR 2022 oral
Evaluating real-world robot manipulation policies in simulation
Xuanlin Li*, Kyle Hsu*, Jiayuan Gu*, Karl Pertsch, Oier Mees, Homer
Rich Walke, Chuyuan Fu, Ishikaa Lunawat, Isabel
Sieh, Sean Kirmani, Sergey Levine, Jiajun Wu, Chelsea Finn, Hao Su,
Quan Vuong, Ted Xiao
CoRL 2024
DGR@RSS2024 spotlight
Unsupervised learning via meta-learning
Kyle Hsu, Sergey Levine, Chelsea Finn
ICLR 2019
Unsupervised curricula for visual meta-reinforcement learning
Allan Jabri, Kyle Hsu, Ben Eysenbach, Abhishek Gupta, Sergey Levine,
Chelsea Finn
NeurIPS 2019 spotlight
FSPO: few-shot preference optimization of synthetic data in LLMs elicits effective personalization to real users
Anikait Singh*, Sheryl Hsu*, Kyle Hsu, Eric Mitchell, Stefano Ermon, Tatsunori Hashimoto, Archit Sharma, Chelsea Finn
preprint
Multi-layered abstraction-based controller synthesis for
continuous-time systems
Kyle Hsu, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck
HSCC 2018
Lazy abstraction-based controller synthesis
Kyle Hsu, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck
ATVA 2019 invited paper